
1

Multisensor D25. Multisensor Data Fusion

Multisensor data fusion is the process of com-

bining observations from a number of different

sensors to provide a robust and complete de-

scription of an environment or process of

interest. Data fusion finds wide application

in many areas of robotics such as object

recognition, environment mapping, and locali-

sation.

This chapter has three parts: methods, ar-

chitectures and applications. Most current data

fusion methods employ probabilistic descriptions

of observations and processes and use Bayes’ rule

to combine this information. This chapter sur-

veys the main probabilistic modeling and fusion

techniques including grid-based models, Kalman

filtering and sequential Monte Carlo techniques.

This chapter also briefly reviews a number of

non-probabilistic data fusion methods. Data fu-

sion systems are often complex combinations of

sensor devices, processing and fusion algorithms.

This chapter provides an overview of key principles

in data fusion architectures from both a hardware

and algorithmic viewpoint. The applications of

data fusion are pervasive in robotics and underly

the core problem of sensing, estimation and per-

ception. We highlight two example applications

that bring out these features. The first describes

a navigation or self-tracking application for an

autonomous vehicle. The second describes an

25.1 Multisensor Data Fusion Methods........... 1
25.1.1 Bayes’ Rule 2
25.1.2 Probabilistic Grids 5
25.1.3 The Kalman Filter 6
25.1.4 Sequential Monte Carlo Methods 10
25.1.5 Alternatives to Probability 12

25.2 Multisensor Fusion Architectures 14
25.2.1 Architectural Taxonomy 14
25.2.2 Centralized, Local Interaction,

and Hierarchical 16
25.2.3 Decentralized, Global Interaction,

and Heterarchical......................... 16
25.2.4 Decentralized, Local Interaction,

and Hierarchical 17
25.2.5 Decentralized, Local Interaction,

and Heterarchical......................... 18

25.3 Applications ... 19
25.3.1 Dynamic System Control 19
25.3.2 ANSER II: Decentralised Data Fusion 20

25.4 Conclusions and Further Reading 23

References .. 24

application in mapping and environment model-

ing.

The essential algorithmic tools of data fusion

are reasonably well established. However, the

development and use of these tools in realistic

robotics applications is still developing.

25.1 Multisensor Data Fusion Methods

The most widely used data fusion methods employed
in robotics originate in the fields of statistics, esti-
mation and control. However, the application of these
methods in robotics has a number of unique features
and challenges. In particular, most often autonomy
is the goal and so results must be presented and
interpreted in a form from which autonomous deci-
sions can be made; for recognition or navigation, for
example.

In this section we review the main data fusion meth-
ods employed in robotics. These are very often based on
probabilistic methods, and indeed probabilistic meth-
ods are now considered the standard approach to data
fusion in all robotics applications [25.1]. Probabilis-
tic data fusion methods are generally based on Bayes’
rule for combining prior and observation information.
Practically, this may be implemented in a number of
ways: through the use of the Kalman and extended

Part
C

2
5

2 Part C Sensing and Perception

Kalman filters, through sequential Monte Carlo meth-
ods, or through the use of functional density estimates.
Each of these is reviewed. There are a number of al-
ternatives to probabilistic methods. These include the
theory of evidence and interval methods. Such alterna-
tive techniques are not as widely used as they once were,
however they have some special features that can be ad-
vantageous in specific problems. These, too, are briefly
reviewed.

25.1.1 Bayes’ Rule

Bayes’ rule lies at the heart of most data fusion meth-
ods. In general, Bayes’ rule provides a means to make
inferences about an object or environment of interest
described by a state x, given an observation z.

Bayesian Inference
Bayes’ rule requires that the relationship between x and
z be encoded as a joint probability or joint probability
distribution P(x, z) for discrete and continuous variables
respectively. The chain-rule of conditional probabilities
can be used to expand a joint probability in two ways

P(x, z) = P(x | z)P(z) = P(z | x)P(x). (25.1)

Rearranging in terms of one of the conditionals, Bayes’
rule is obtained

P(x | z) = P(z | x)P(x)

P(z)
. (25.2)

The value of this result lies in the interpretation of the
probabilities P(x | z), P(z | x), and P(x). Suppose it is
necessary to determine the various likelihoods of differ-
ent values of an unknown state x. There may be prior
beliefs about what values of x might be expected, en-
coded in the form of relative likelihoods in the prior
probability P(x). To obtain more information about the
state x an observation z is made. These observations are
modeled in the form of a conditional probability P(z | x)
which describes, for each fixed state x, the probability
that the observation z will be made; i. e., the probabil-
ity of z given x. The new likelihoods associated with
the state x are computed from the product of the orig-
inal prior information and the information gained by
observation. This is encoded in the posterior probabil-
ity P(x | z) which describes the likelihoods associated
with x given the observation z. In this fusion process,
the marginal probability P(z) simply serves to normal-
ize the posterior and is not generally computed. The
marginal P(z) plays an important role in model valida-
tion or data association as it provides a measure of how

well the observation is predicted by the prior. This is
because P(z) = ∫

P(z | x)P(x)dx. The value of Bayes’
rule is that it provides a principled means of combining
observed information with prior beliefs about the state
of the world.

Sensor Models
and Multisensor Bayesian Inference

The conditional probability P(z | x) serves the role of
a sensor model and can be thought of in two ways. First,
in building a sensor model, the probability is constructed
by fixing the value of x = x and then asking what proba-
bility density P(z | x = x) on z results. Conversely, when
this sensor model is used and observations are made,
z = z is fixed and a likelihood function P(z = z | x) on
x is inferred. The likelihood function, while not strictly
a probability density, models the relative likelihood that
different values of x gave rise to the observed value of z.
The product of this likelihood with the prior, both defined
on x, gives the posterior or observation update P(x | z).
In a practical implementation of Equation025-bayeseq,
P(z | x) is constructed as a function of both variables
(or a matrix in discrete form). For each fixed value of
x, a probability density on z is defined. Therefore as x
varies, a family of likelihoods on z is created.

The multisensor form of Bayes’ rule requires condi-
tional independence

P(z1, · · · , zn | x) = P(z1 | x) · · · P(zn | x)

=
n∏

i=1

P(zi | x) . (25.3)

qso that

P(x | Zn) = CP(x)
n∏

i=1

P(zi | x) , (25.4)

where C is a normalising constant. Equation (25.4) is
known as the independent likelihood pool [25.2]. This
states that the posterior probability on x given all ob-
servations Zn , is simply proportional to the product of
prior probability and individual likelihoods from each
information source.

The recursive form of Bayes’ rule is

P(x | Zk) = P(zk | x)P(x | Zk−1)

P
(
zk | Zk−1

) . (25.5)

The advantage of (25.5) is that we need compute and
store only the posterior density P(x | Zk−1) which con-
tains a complete summary of all past information. When
the next piece of information P(zk | x) arrives, the pre-
vious posterior takes on the role of the current prior and

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 3

the product of the two becomes, when normalised, the
new posterior.

Bayesian Filtering
Filtering is concerned with the sequential process of
maintaining a probabilistic model for a state which
evolves over time and which is periodically observed
by a sensor. Filtering forms the basis for many problems

P (xk–1,xk)

P (xk–1)

P (xk–1|xk–1)

∫P (xk,xk–1)dxk–1

∫P (xk,xk–1)dxk

P (xk)

0

5

10

15

50

40

30

20

10

0

1.2

1

0.8

0.6

0.4

0.2

0

xk = f (xk–1,Uk)

xk–1

xk

Fig. 25.1 Time update step for the full Bayes filter. At a time k −1, knowledge of the state xk−1 is summarised in
a probability distribution P(xk−1). A vehicle model, in the form of a conditional probability density P(xk | xk−1), then
describes the stochastic transition of the vehicle from a state xk−1 at a time k −1 to a state xk at a time k. Functionally,
this state transition may be related to an underlying kinematic state model in the form xk = f (xk−1, uk). The figure shows
two typical conditional probability distributions P(xk | xk−1) on the state xk given fixed values of xk−1. The product
of this conditional distribution with the marginal distribution P(xk−1), describing the prior likelihood of values of xk ,
gives the the joint distribution P(xk, xk−1) shown as the surface in the figure. The total marginal density P(xk) describes
knowledge of xk after state transition has occurred. The marginal density P(xk) is obtained by integrating (projecting) the
joint distribution P(xk, xk−1) over all xk−1. Equivalently, using the total probability theorem, the marginal density can
be obtained by integrating (summing) all conditional densities P(xk | xk−1) weighted by the prior probability P(xk−1) of
each xk−1. The process can equally be run in reverse (a retroverse motion model) to obtain P(xk−1) from P(xk) given
a model P(xk−1 | xk)

in tracking and navigation. The general filtering problem
can be formulated in Bayesian form. This is significant
because it provides a common representation for a range
of discrete and continuous data fusion problems without
recourse to specific target or observation models.

Define xt as the value of a state of interest at time t.
This may, for example, describe a feature to be tracked,
the state of a process being monitored, or the location

Part
C

2
5
.1

4 Part C Sensing and Perception

of a platform for which navigation data is required. For
convenience, and without loss of generality, time is de-
fined at discrete (asynchronous) times tk � k. At a time
instant k, the following quantities are defined:

xk: The state vector to be estimated at time k,
uk: A control vector, assumed known, and applied at

time k −1 to drive the state from xk−1 to xk at time
k,

zk: An observation taken of the state xk at time k.

In addition, the following sets are also defined.

P (xk–)

P (zk |xk=x1)

0

10

20

30

40

50

0

5

10

15z

x

1.2

1

0.8

0.6

0.4

0.2

0

P (zk=x1 |xk)

P (zk |xk=x2)

Fig. 25.2 Observation update for the full Bayes filter. Prior to observation, an observation model in the form of the
conditional density P(zk | xk) is established. For a fixed value of xk , equal to x1 or x2 for example, a density func-
tion P(zk | xk = x1) or P(zk | xk = x2) is defined describing the likelihood of making the observation zk. Together
the density P(zk | xk) is then a function of both zk and xk . This conditional density then defines the observation
model. Now, in operation, a specific observation zk = x1 is made and the resulting distribution P(zk = x1 | xk) de-
fines a density function (now termed the likelihood function) on xk . This density is then multiplied by the prior
density P(x−

k) and normalised to obtain the posterior distribution P(xk | zk) describing knowledge in the state after
observation

• The history of states:
Xk = {x0, x1, · · · , xk} = {Xk−1, xk}.• The history of control inputs:
Uk = {u1, u2, · · · , uk} = {Uk−1, uk}.• The history of state observations:
Zk = {z1, z2, · · · , zk} = {Zk−1, zk}.

In probabilistic form, the general data fusion prob-
lem is to find the posterior density

P
(
xk | Zk, Uk, x0

)
(25.6)

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 5

for all times k given the recorded observations and con-
trol inputs up to and including time k together (possibly)
with knowledge of the initial state x0. Bayes’ rule can be
used to write (25.6) in terms of a sensor model P(zk | xk)
and a predicted probability density P(xk | Zk−1, Uk, x0)
based on observations up to time k −1 as

P
(
xk | Zk, Uk, x0

)

= P(zk | xk)P
(
xk | Zk−1, Uk, x0

)
P
(
zk | Zk−1, Uk

) . (25.7)

The denominator in (25.7) is independent of the state
and following (25.4) can be set to some normalising con-
stant C. The sensor model makes use of the conditional
independence assumption from (25.3).

The total probability theorem can be used to rewrite
the second term in the numerator of (25.7) in terms of
the state transition model and the joint posterior from
time-step k −1 as

P
(
xk | Zk−1, Uk, x0

)
=

∫
P
(
xk, xk−1 | Zk−1, Uk, x0

)
dxk−1

=
∫

P
(
xk | xk−1, Zk−1, Uk, x0

)
× P

(
xk−1 | Zk−1, Uk, x0

)
dxk−1

=
∫

P(xk | xk−1, uk)

× P
(
xk−1 | Zk−1, Uk−1, x0

)
dxk−1 , (25.8)

where the last equality implies that the future state de-
pends only on the current state and the control exerted at
this time. The state transition model is described in terms
of a probability distribution in the form P(xk | xk−1, uk).
That is, the state transition may reasonably be assumed
to be a Markov process in which the next state xk de-
pends only on the immediately proceeding state xk−1
and the applied control uk, and is independent of both
the observations and preceding states.

Equations (25.7) and (25.8) define a recursive so-
lution to (25.6). Equation (25.8) is the time update or
prediction step for the full Bayes data fusion algorithm.
A graphical description of this equation is shown in
Fig. 25.1. Equation (25.7) is the observation update step
for the full Bayes data fusion algorithm. A graphical
description of this equation is shown in Fig. 25.2. The
Kalman filter, grid-based methods and sequential Monte
Carlo methods, to be described, are specific implemen-
tations of these general equations.

25.1.2 Probabilistic Grids

Probabilistic grids are conceptually the simplest way of
implementing Bayesian data fusion methods. They can
be applied both to problems in mapping [25.3, 4] and
tracking [25.5].

In mapping applications, the environment of interest
is divided into a grid of equal sized spatial cells. Each cell
is indexed and labeled with a property, thus the state xij
may describe a two dimensional world indexed by ij and
having the property x. Interest is focused on maintaining
a probability distribution on possible state values P(xij)
at each grid cell. Typically, in navigation and mapping
problems, the property of interest has only two values
O and E, occupied and empty, respectively, and it is
then usual to assume that P(xij = O) = 1− P(xij = E).
However, there is no particular constraint on the property
encoded by the state xij which could have many values
(green, red, blue, for example) and indeed be continuous
(the temperature at a cell for example).

Once the state has been defined, Bayesian methods
require that a sensor model or likelihood function for the
sensor be established. In theory, this requires specifica-
tion of a probability distribution P(z | xij = xij) mapping
each possible grid state xij to a distribution on observa-
tions. Practically, however, this is implemented simply
as another observation grid so that for a specific ob-
servation z = z (taken from a specific location), a grid
of likelihoods on the states xij is produced in the form
P(z = z | xij) = Λ(xij). It is then trivial to apply Bayes’
rule to update the property value at each grid cell as

P+(xij) = CΛ(xij)P(xij) , ∀i, j , (25.9)

where C us a normalising constant obtained by summing
posterior probabilities to one at node ij only. Computa-
tionally, this is a simple point-wise multiplication of two
grids. Some care needs to be taken that the two grids ap-
propriately overlap and align with each other at the right
scale. In some instances it is also valuable to encode
the fact that spatially adjacent cells will influence each
other; that is, if we knew the value of the property (oc-
cupancy, temperature for example) at ij we will have
some belief also of the value of this property at adja-
cent nodes i +1, j, i, j +1, etc. Different sensors and
the fusion of different sensor outputs is accommodated
simply by building appropriate sensor models Λ(xij).

Grids can also be used for tracking and self-tracking
(localisation). The state xij in this case is the location of
the entity being tracked. This is a qualitatively different
definition of state from that used in mapping. The prob-
ability P(xij) must now be interpreted as the probability

Part
C

2
5
.1

6 Part C Sensing and Perception

that the object being tracked occupies the grid cell ij. In
the case of mapping, the sum of property probabilities
at each grid cell is one, whereas in the case of tracking,
the sum of location probabilities over the whole grid
must sum to one. Otherwise, the procedure for updat-
ing is very similar. An observation grid is constructed
which when instantiated with an observation value pro-
vides a location likelihood grid P(z = z | xij) = Λ(xij).
Bayes’ rule is then applied to update the location proba-
bility at each grid cell in the same form as (25.9) except
that now the normalisation constant C is obtained by
summing posterior probabilities over all ij grid cells.
This can become computationally expensive, especially
if the grid has three or more dimensions. One major
advantage of grid-based tracking is that it is easy to in-
corporate quite complex prior information. For example,
if it is known that the object being tracked is on a road,
then the probability location values for all off-road grid
cells can simply be set to zero.

Grid based fusion is appropriate to situations where
the domain size and dimension are modest. In such
cases, grid based methods provide straightforward and
effective fusion algorithms. Grid based methods can be
extended in a number of ways; to hierarchical (quad-
tree) grids, or to irregular (triangular, pentagonal) grids.
These can help reduce computation in larger spaces.
Monte Carlo and particle filtering methods (Sect. 25.1.4)
may be considered as grid-based methods, where the
grid cells themselves are sample of the underlying prob-
ability density for the state.

25.1.3 The Kalman Filter

The Kalman filter is a recursive linear estimator which
successively calculates an estimate for a continuous val-
ued state, that evolves over time, on the basis of periodic
observations of the state. The Kalman filter employs an
explicit statistical model of how the parameter of in-
terest x(t) evolves over time and an explicit statistical
model of how the observations z(t) that are made are re-
lated to this parameter. The gains employed in a Kalman
filter are chosen to ensure that, with certain assump-
tions about the observation and process models used,
the resulting estimate x̂(t) minimises mean-squared er-
ror and is thus the conditional mean x̂(t) = E[x(t) | Zt];
an average, rather than a most likely value.

The Kalman filter has a number of features
which make it ideally suited to dealing with complex
multi-sensor estimation and data fusion problems. In
particular, the explicit description of process and ob-
servations allows a wide variety of different sensor

models to be incorporated within the basic algorithm.
In addition, the consistent use of statistical measures of
uncertainty makes it possible to quantitatively evaluate
the role each sensor plays in overall system performance.
Further, the linear recursive nature of the algorithm en-
sures that its application is simple and efficient. For these
reasons, the Kalman filter has found wide-spread appli-
cation in many different data fusion problems [25.6–9].

In robotics, the Kalman filter is most suited to prob-
lems in tracking, localisation and navigation; and less
so to problems in mapping. This is because the algo-
rithm works best with well defined state descriptions
(positions, velocities, for example), and for states where
observation and time-propagation models are also well
understood.

Observation and Transition Models
The Kalman filter may be considered a specific instance
of the recursive Bayesian filter of (25.7,25.8) for the case
where the probability densities on states are Gaussian.
The starting point for the Kalman Filter algorithm is
to define a model for the states to be estimated in the
standard state-space form:

ẋ(t) = F(t)x(t)+ B(t)u(t)+ G(t)v(t) , (25.10)

where x(t) is the state vector of interest, u(t) is a known
control input, v(t) is a random variable describing un-
certainty in the evolution of the state, and where F(t),
B(t), and G(t) are matrices describing the contribution
of states, controls and noise to state transition [25.7]. An
observation (output) model is also defined in standard
state-space form:

z(t) = H(t)x(t)+ D(t)w(t) , (25.11)

where z(t) is the observation vector, w(t) is a ran-
dom variable describing uncertainty in the observation,
and where H(t) and D(t) are matrices describing the
contribution of state and noise to the observation.

These equations define the evolution of a continuous-
time system with continuous observations being made of
the state. However, the Kalman Filter is almost always
implemented in discrete-time tk = k. It is straightfor-
ward [25.8] to obtain a discrete-time version of (25.10)
and (25.11) in the form

x(k) = F(k)x(k −1)+ B(k)u(k)+ G(k)v(k) ,

(25.12)

z(k) = H(k)x(k)+ D(k)w(k) . (25.13)

A basic assumption in the derivation of the Kalman
filter is that the random sequences v(k) and w(k) de-
scribing process and observation noise are all Gaussian,

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 7

temporally uncorrelated and zero-mean

E[v(k)] = E[w(k)] = 0 , ∀k , (25.14)

with known covariance

E[v(i)vT(j)] = δij Q(i) , E[w(i)wT(j)] = δij R(i) .

(25.15)

It is also generally assumed that the process and obser-
vation noises are also uncorrelated

E[v(i)wT(j)] = 0 , ∀i, j . (25.16)

These are equivalent to a Markov property requiring
observations and successive states to be conditionally
independent. If the sequences v(k) and w(k) are tempo-
rally correlated, a shaping filter can be used to whiten the
observations, again making the assumptions required for
the Kalman filter valid [25.8]. If the process and observa-
tion noise sequences are correlated, then this correlation
can also be accounted for in the Kalman filter algo-
rithm [25.10]. If the sequence is not Gaussian, but is
symmetric with finite moments, then the Kalman filter
will still produce good estimates. If however, the se-
quence has a distribution which is skewed or otherwise
pathological, results produced by the Kalman filter will
be misleading and there will be a good case for using
a more sophisticated Bayesian filter [25.5].

Filtering Algorithm
The Kalman filter algorithm produces estimates that
minimise mean-squared estimation error conditioned on
a given observation sequence and so is the conditional
mean

x̂(i | j)� E[x(i) | z(1), · · · , z(j)]� E[x(i) | Z j] .

(25.17)

The estimate variance is defined as the mean-squared
error in this estimate

P(i | j)� E{[x(i)− x̂(i | j)][x(i)− x̂(i | j)]T | Z j} .

(25.18)

The estimate of the state at a time k given all information
up to time k is written as x̂(k | k). The estimate of the
state at a time k given only information up to time k −1 is
called a one-step-ahead prediction (or just a prediction)
and is written as x̂(k | k −1).

The Kalman filter algorithm is now stated without
proof. Detailed derivations can be found in many books
on the subject, [25.7,8] for example. The state is assumed
to evolve in time according to (25.12). Observations of
this state are made at regular time intervals according

to (25.13). The noise processes entering the system are
assumed to obey (25.14), (25.15) and (25.16). It is also
assumed that an estimate x̂(k −1 | k −1) of the state
x(k −1) at time k −1 based on all observations made
up to and including time k −1 is available, and that this
estimate is equal to the conditional mean of the true
state x(k −1) conditioned on these observations. The
conditional variance P(k −1 | k −1) in this estimate is
also assumed known. The Kalman filter then proceeds
recursively in two stages (Fig. 25.3).

Prediction. A prediction x̂(k | k-1) of the state at time k
and its covariance P(k | k −1) is computed according to

x̂(k | k −1) = F(k)x̂(k −1 | k −1)+ B(k)u(k) ,

(25.19)

P(k | k −1) = F(k)P(k −1 | k −1)FT(k)

+ G(k)Q(k)GT(k) . (25.20)

Update. At time k an observation z(k) is made and the
updated estimate x̂(k | k) of the state x(k), together with
the updated estimate covariance P(k | k) is computed
from the state prediction and observation according to

x̂(k | k) = x̂(k | k −1)+ W(k)[z(k)

− H(k)x̂(k | k −1)] , (25.21)

P(k | k) = P(k | k −1)− W(k)S(k)WT(k) , (25.22)

where the gain matrix W(k) is given by

W(k) = P(k | k −1)H(k)S−1(k) , (25.23)

where

S(k) = R(k)+ H(k)P(k | k −1)H(k) (25.24)

is the innovation covariance. The difference between the
observation z(k) and the predicted observation H(k)x̂(k |
k −1) is termed the innovation or residual ν(k):

ν(k) = z(k)− H(k)x̂(k | k −1) . (25.25)

The innovation is an important measure of the devi-
ation between the filter estimates and the observation
sequence. Indeed, because the true states are not usu-
ally available for comparison with the estimated states,
the innovation is often the only measure of how well the
estimator is performing. The innovation is particularly
important in data association.

The Extended Kalman Filter
The extended Kalman filter (EKF) is a form of the
Kalman filter that can be employed when the state model

Part
C

2
5
.1

8 Part C Sensing and Perception

True state

Control at tk
u (k)

Estimation
of state

State estimate
at tk–1

x (k–1|k–1)

State covariance
computation

State error covariance
at tk–1

P (k–1|k–1)

State transition
x (k)=F (k)x (k–1)
+G (k)u (k)+υ (k)

State prediction
x (k|k–1) =

F (k)x (k–1)|k–1)+G (k)u (k)

State prediction
 covariance
P (k|k–1) =

F (k)P (k–1|k–1)F (k)+Q (k)

Innovation
v (k) = z (k)–z(k |k–1)

Filter gain
W (k) =

P (k |k–1)H' (k)S –1(k)

Updated state estimate
x (k|k) =

x (k |k–1)+W (k)υ (k)

Updated state covariance
P (k|k) =

P (k |k–1)–W (k)S (k)W'(k)

Measurement at tk
z (k)=H (k)x (k)+w (k)

Measurement prediction
z (k|k–1) =

H (k)x (k |k–1)

Innovation covariance
S (k) =

H (k)P (k |k–1)H' (k)+R (k)

Fig. 25.3 Block diagram of the Kalman filter cycle (after Bar-Shalom and Fortmann 1988 [25.7])

and/or the observation model are nonlinear. The EKF is
briefly described in this section.

The state models considered by the EKF are de-
scribed in state-space notation by a first order nonlinear
vector differential equation or state model of the form

ẋ(t) = f [x(t), u(t), v(t), t] , (25.26)

where f [·, ·, ·, ·] is now a general nonlinear mapping
of state and control input to state transition. The obser-
vation models considered by the EKF are described in
state-space notation by a nonlinear vector function in
the form

z(t) = h[x(t), u(t),w(t), t] , (25.27)

where h[·, ·, ·, ·] is now a general nonlinear mapping of
state and control input to observations.

The EKF, like the Kalman filter, is almost always
implemented in discrete-time. By integration and with
appropriate identification of discrete time states and
observations, the state model is written as

x(k) = f [x(k −1), u(k), v(k), k] , (25.28)

and the observation model as

z(k) = h[x(k),w(k)] . (25.29)

Like the Kalman filter, it is assumed that the noises v(k)
and w(k) are all Gaussian, temporally uncorrelated and
zero-mean with known variance as defined in (25.14–
25.16). The EKF aims to minimise mean-squared error
and therefore compute an approximation to the condi-
tional mean. It is assumed therefore that an estimate of
the state at time k −1 is available which is approximately
equal to the conditional mean, x̂(k −1 | k −1) ≈ E[x(k −
1) | Zk−1]. The EKF algorithm will now be stated with-
out proof. Detailed derivations may be found in any
number of books on the subject. The principle stages in
the derivation of the EKF follow directly from those of
the linear Kalman filter with the additional step that the
process and observation models are linearised as a Tay-
lor series about the estimate and prediction, respectively.
The algorithm has two stages:

Prediction. A prediction x̂(k | k −1) of the state at time k
and its covariance P(k | k −1) is computed according to

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 9

x̂(k | k −1) = f [x̂(k −1 | k −1), u(k)] , (25.30)

P(k | k −1) = ∇ fx(k)P(k −1 | k −1)∇T fx(k)

+∇ fv(k)Q(k)∇T fv(k) . (25.31)

Update. At time k an observation z(k) is made and the
updated estimate x̂(k | k) of the state x(k), together with
the updated estimate covariance P(k | k) is computed
from the state prediction and observation according to

x̂(k | k) = x̂(k | k −1)

+ W(k){z(k)−h[x̂(k | k −1)]} , (25.32)

P(k | k) = P(k | k −1)− W(k)S(k)WT, (k) , (25.33)

where

W(k) = P(k | k −1)∇Thx(k)S−1(k) (25.34)

and

S(k) = ∇hw(k)R(k)∇Thw(k)

+∇hx(k)P(k | k −1)∇Thx(k) (25.35)

and where the Jacobian ∇ f·(k) is evaluated at x(k −1) =
x̂(k −1 | k −1) and ∇h·(k) is evaluated at and x(k) =
x̂(k | k −1).

A comparison of (25.19–25.24) with (25.30–25.35)
makes it clear that the EKF algorithm is very similar to
the linear Kalman filter algorithm, with the substitutions
F(k) → ∇ fx(k) and H(k) → ∇hx(k) being made in the
equations for the variance and gain propagation. Thus,
the EKF is, in effect, a linear estimator for a state error
which is described by a linear equation and which is
being observed according to a linear equation of the
form of (25.13).

The EKF works in much the same way as the linear
Kalman filter with some notable caveats.

• The Jacobians ∇ fx(k) and ∇hx(k) are typically not
constant, being functions of both state and timestep.
This means that unlike the linear filter, the covari-
ances and gain matrix must be computed on-line as
estimates and predictions are made available, and
will not in general tend to constant values. This
significantly increases the amount of computation
which must be performed on-line by the algorithm.• As the linearised model is derived by perturbing the
true state and observation models around a predicted
or nominal trajectory, great care must be taken to en-
sure that these predictions are always close enough
to the true state that second order terms in the lin-
earisation are indeed insignificant. If the nominal
trajectory is too far away from the true trajectory

then the true covariance will be much larger than
the estimated covariance and the filter will become
poorly matched. In extreme cases the filter may also
become unstable.• The EKF employs a linearised model which must
be computed from an approximate knowledge of
the state. Unlike the linear algorithm, this means
that the filter must be accurately initialized at the
start of operation to ensure that the linearised models
obtained are valid. If this is not done, the estimates
computed by the filter will simply be meaningless.

The Information Filter
The information filter is mathematically equivalent to
a Kalman filter. However, rather than generating state
estimates x̂(i | j) and covariances P(i | j) it uses infor-
mation state variables ŷ(i | j) and information matrices
Y(i | j) which are related to each other through the
relationships

ŷ(i | j) = P−1(i | j)x̂(i | j) , Y(i | j) = P−1(i | j) .

(25.36)

The information filter has the same prediction-update
structure as the Kalman filter.

Prediction. A prediction ŷ(k | k −1) of the information
state at time k and its information matrix Y(k | k −1) is
computed according to (Joseph form [25.8]):

ŷ(k | k −1) = (1−ΩGT)F−T ŷ(k −1 | k −1)

+Y(k | k −1)Bu(k) , (25.37)

Y(k | k −1) = M(k)−ΩΣΩT , (25.38)

respectively, where

M(k) = F−T Y(k −1 | k −1)F−1 ,

Σ = GT M(k)G + Q−1 ,

and

Ω = M(tk)GΣ−1 .

It should be noted that Σ , whose inverse is required to
compute Ω, is only of dimension of the process driving
noise which is normally considerably smaller than the
state dimension. Further, the matrix F−1 is the state-
transition matrix evaluated backwards in time and so
must always exist.

Update. At time k an observation z(k) is made and the
updated information state estimate ŷ(k | k) together with

Part
C

2
5
.1

10 Part C Sensing and Perception

the updated information matrix Y(k | k) is computed
from

ŷ(k | k) = ŷ(k | k −1)+ H(k)R−1(k)z(k) , (25.39)

Y(k | k) = Y(k | k −1)+ H(k)R−1(k)HT(k). (25.40)

We emphasise that (25.38) and (25.37) are math-
ematically identical to (25.19) and (25.20), and that
(25.39) and (25.40) are mathematically identical to
(25.21) and (25.22). It will be noted that there is a dual-
ity between information and state space forms [25.10].
This duality is evident from the fact that Ω and Σ in the
prediction stage of the information filter play an equiva-
lent role to the gain matrix W and innovation covariance
S in the update stage of the Kalman filter. Further, the
simple linear update step for the information filter is mir-
rored in the simple linear prediction step for the Kalman
filter.

The main advantage of the information filter over the
Kalman filter in data fusion problems is the relative sim-
plicity of the update stage. For a system with n sensors,
the fused information state update is exactly the linear
sum of information contributions from all sensors as

ŷ(k | k) = ŷ(k | k −1)+
n∑

i=1

Hi (k)R−1
i (k)zi (k) ,

Y(k | k) = Y(k | k −1)+
n∑

i=1

Hi (k)R−1
i (k)HT

i (k) .

(25.41)

The reason such an expression exists in this form is that
the information filter is essentially a log-likelihood ex-
pression of Bayes’ rule, where products of likelihoods
(25.4) are turned into sums. No such simple expression
for multi-sensor updates exists for the Kalman Filter.
This property of the information filter has been ex-
ploited for data fusion in robotic networks [25.11, 12]
and more recently in robot navigation and localisation
problems [25.1]. One substantial disadvantage of the
information filter is the coding of nonlinear models,
especially for the prediction step.

When to Use a Kalman or Information Filter
Kalman or information filters are appropriate to data fu-
sion problems where the entity of interest is well defined
by a continuous parametric state. This would include es-
timation of the position, attitude and velocity of a robot
or other object, or the tracking of a simple geometric
feature such as a point, line or curve. Kalman and infor-
mation filters are inappropriate for estimating properties
such as spatial occupancy, discrete labels, or processes
whose error characteristics are not easily parametrised.

25.1.4 Sequential Monte Carlo Methods

Monte Carlo (MC) filter methods describe probability
distributions as a set of weighted samples of an underly-
ing state space. MC filtering then uses these samples to
simulate probabilistic inference usually through Bayes’
rule. Many samples or simulations are performed. By
studying the statistics of these samples as they progress
through the inference process, a probabilistic picture of
the process being simulated can be built up.

Representing Probability Distributions
In sequential Monte Carlo methods, probability dis-
tributions are described in terms of a set of support
points (state space values) xi , i = 1, · · · , N , together
with a corresponding set of normalised weights wi ,
i = 1, · · · , N , where

∑
i wi = 1. The support points

and weights can be used to define a probability density
function in the form

P(x) ≈
N∑

i=1

wiδ(x− xi) . (25.42)

A key question is how these support points and weights
are selected to obtain a faithful representation of the
probability density P(x). The most general way of se-
lecting support values is to use an importance density
q(x). The support values xi are drawn as samples from
this density; where the density has high probability, more
support values are chosen, and where the density has low
probability, few support support vectors are selected.
The weights in (25.42) are then computed from

wi ∝ P(xi)

q(xi)
. (25.43)

Practically, a sample xi is drawn from the importance
distribution. The sample is then instantiated in the
underlying probability distribution to yield the value
P(x = xi). The ratio of the two probability values,
appropriately normalised, then becomes the weight.

There are two instructive extremes of the importance
sampling method.

1. At one extreme, the importance density could be
taken to be a uniform distribution and so the sup-
port values xi are uniformly distributed on the state
space in a close approximation to a grid. The prob-
abilities q(xi) are also therefore equal. The weights
computed from (25.43) are then simply proportional
to the probabilities wi ∝ P(x = xi). The result is
a model for the distribution which looks very like
the regular grid model.

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 11

2. At the other extreme, we could choose an importance
density equal to the probability model q(x) = P(x).
Samples of the support values xi are now drawn from
this density. Where the density is high there will be
many samples, where the density is low there will
be few samples. However, if we substitute q(xi) =
P(xi) into (25.43), it is clear that the weights all
become equal wi = 1/N . A set of samples with equal
weights is known as a particle distribution.

It is, of course, possible to mix these two representa-
tions to describe a probability distribution both in terms
of a set of weights and in terms of a set of support val-
ues. The complete set of samples and weights describing
a probability distribution {xi , wi}N

i=1 is termed a random
measure.

The Sequential Monte Carlo Method
Sequential Monte Carlo (SMC) filtering is a simulation
of the recursive Bayes update equations using sample
support values and weights to describe the underlying
probability distributions.

The starting point is the recursive or sequential
Bayes observation update given in (25.7) and (25.8).
The SMC recursion begins with a posterior probabil-
ity density represented by a set of support values and
weights {xi

k−1, w
i
k−1|k−1}Nk−1

i=1 in the form

P
(
xk−1 | Zk−1) =

Nk−1∑
i=1

wi
k−1δ

(
xk−1 − xi

k−1

)
. (25.44)

The prediction step requires that (25.44) is substituted
into (25.8) where the joint density is marginalised.
Practically however, this complex step is avoided by im-
plicitly assuming that the importance density is exactly
the transition model as

qk
(
xi

k

) = P
(
xi

k | xi
k−1

)
. (25.45)

This allows new support values xi
k to be drawn on

the basis of old support values xi
k−1 while leaving the

weights unchanged wi
k = wi

k−1. With this, the prediction
becomes

P
(
xk | Zk−1) =

Nk∑
i=1

wi
k−1δ

(
xk − xi

k

)
. (25.46)

The SMC observation update step is relatively straight-
forward. An observation model P(zk | xk) is defined.
This is a function on both variables, zk and xk,
and is a probability distribution on zk (integrates
to unity). When an observation or measurement is

made, zk = zk, the observation model becomes a func-
tion of state xk only. If samples of the state are
taken xk = xi

k, i = 1 · · · , Nk, the observation model
P(zk = zk | xk = xi

k) becomes a set of scalars describ-
ing the likelihood that the sample xi

k could have given
rise to the observation zk. Substituting these likelihoods
and (25.46) into (25.7) gives:

P
(
xk | Zk)

= C
Nk∑

i=1

wi
k−1 P

(
zk = zk | xk = xi

k

)
δ
(
xk − xi

k

)
.

(25.47)

This is normally implemented in the form of an updated
set of normalised weights

wi
k = wi

k−1 P
(
zk = zk | xk = xi

k

)
∑Nk

j=1 w
j
k−1 P

(
zk = zk | xk = x j

k

) (25.48)

and so

P
(
xk | Zk) =

Nk∑
i=1

wi
kδ

(
xk − xi

k

)
. (25.49)

Note that the support values in (25.49) are the same as
those in (25.46), only the weights have been changed by
the observation update.

The implementation of the SMC method requires the
enumeration of models for both state transition P(xk |
xk−1) and the observation P(zk | xk). These need to be
presented in a form that allows instantiation of values
for zk, xk and xk−1. For low dimensional state spaces,
interpolation in a lookup table is a viable representation.
For high dimensional state spaces, the preferred method
is to provide a representation in terms of a function.

Practically, (25.46) and (25.49) are implemented as
follows:

Time Update. A process model is defined in the usual
state-space form as xk = f (xk−1,wk−1, k), where wk is
an independent noise sequence with known probability
density P(wk). The prediction step is now implemented
as follows: Nk samples wi

k, i = 1, · · · , Nk are drawn
from the distribution P(wk). The Nk support values xi

k−1
together with the samples wi

k are passed through the
process model as

xi
k = f

(
xi

k−1,w
i
k−1, k

)
(25.50)

yielding a new set of support vectors xi
k. The weights for

these support vectors wi
k−1 are not changed. In effect,

the process model is simply used to do Nk simulations
of state propagation.

Part
C

2
5
.1

12 Part C Sensing and Perception

Observation Update. The observation model is also de-
fined in the usual state-space form as zk = h(xk, vk, k),
where vk is an independent noise sequence with known
probability density P(vk). The observation step is now
implemented as follows: A measurement zk = zk is
made. For each support value xi

k, a likelihood is com-
puted as

Λ
(
xi

k

) = P
(
zk = zk | xk = xi

k

)
. (25.51)

Practically, this requires that the observation model be
in an equational form (such as a Gaussian) which al-
lows computation of the likelihood in the error between
the measured value zk and the observations predicted
by each particle h(xi

k, k). The updated weights after
observation are just

wi
k ∝ wi

k−1 P
(
zk = zk | xi

k

)
. (25.52)

Resampling
After the weights are updated it is usual to resample
the measure {xi

k, w
i
k}N

i=1. This focuses the samples in on
those areas that have most probability density. The de-
cision to resample is made on the basis of the effective
number, Neff of particles in the sample, approximately
estimated from Neff = 1∑

i (w
i
k)2 . The Sampling Impor-

tance Resampling (SIR) algorithm resamples at every
cycle so that the weights are always equal. One of the
key problems with resampling is that the sample set fix-
ates on a few highly likely samples. This problem of
fixating on a few highly likely particles during resam-
pling is known as sample impoverishment. Generally, it
is good to resample when Neff falls to some fraction of
the actual samples (say 1/2).

When to Use Monte Carlo Methods
Monte Carlo (MC) methods are well suited to problems
where state transition models and observation models
are highly non-linear. This is because sample-based
methods can represent very general probability densi-
ties. In particular multi-modal or multiple hypothesis
density functions are well handled by Monte Carlo tech-
niques. One caveat to note however is that the models
P(xk | xk−1) and P(zk | xk) must be enumerable in all
cases and typically must be in a simple parametric form.
MC methods also span the gap between parametric and
grid-based data fusion methods.

Monte Carlo methods are inappropriate for problems
where the state space is of high dimension. In general the
number of samples required to faithfully model a given
density increases exponentially with state space dimen-
sion. The effects of dimensionality can be limited by

marginalising out states that can be modeled without
sampling, a procedure known as Rao–Blackwellisation.

25.1.5 Alternatives to Probability

The representation of uncertainty is so important to the
problem of information fusion that a number of alter-
native modeling techniques have been proposed to deal
with perceived limitations in probabilistic methods.

There are three main perceived limitations of prob-
abilistic modeling techniques.

1. Complexity: the need to specify a large number
of probabilities to be able to apply probabilistic
reasoning methods correctly.

2. Inconsistency: the difficulties involved in specifying
a consistent set of beliefs in terms of probability and
using these to obtain consistent deductions about
states of interest.

3. Precision of models: the need to be precise in the
specification of probabilities for quantities about
which little is known.

4. Uncertainty about uncertainty: the difficulty in as-
signing probability in the face of uncertainty, or
ignorance about the source of information.

There are three main techniques put forward to ad-
dress these issues; interval calculus, fuzzy logic, and
the theory of evidence (Dempster-Shafer methods). We
briefly discuss each of these in turn.

Interval Calculus
The representation of uncertainty using an interval to
bound true parameter values has a number of potential
advantages over probabilistic techniques. In particular,
intervals provide a good measure of uncertainty in situ-
ations where there is a lack of probabilistic information,
but in which sensor and parameter error is known to be
bounded. In interval techniques, the uncertainty in a pa-
rameter x is simply described by a statement that the
true value of the state x is known to be bounded from
below by a, and from above by b; x ∈ [a, b]. It is im-
portant that no other additional probabilistic structure is
implied, in particular the statement x ∈ [a, b] does not
necessarily imply that x is equally probable (uniformly
distributed) over the interval [a, b].

There are a number of simple and basic rules for
the manipulation of interval errors. These are described
in detail in the book by Moore [25.13] (whose analysis
was originally aimed at understanding limited precision
computer arithmetic). Briefly, with a, b, c, d ∈ , addi-
tion, subtraction, multiplication and division are defined

Part
C

2
5
.1

Multisensor Data Fusion 25.1 Multisensor Data Fusion Methods 13

by the following algebraic relations

[a, b]+ [c, d] = [a + c, b+d] ,

[a, b]− [c, d] = [a −d, b− c] , (25.53)

[a, b]× [c, d] = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)] , (25.54)

[a, b]
[c, d] = [a, b]×

[
1

d
,

1

c

]
, 0 �∈ [c, d] .

(25.55)

It can be shown that interval addition and multipli-
cation are both associative and commutative. Interval
arithmetic admits an obvious metric distance measure;

d([a, b], [c, d]) = max(|a − c|, |b−d|) . (25.56)

Matrix arithmetic using intervals is also possible, but
substantially more complex, particularly when matrix
inversion is required.

Interval calculus methods are sometimes used for
detection. However, they are not generally used in data
fusion problems since:

1. it is difficult to get results that converge to anything
of value (it is too pessimistic), and

2. it is hard to encode dependencies between variables
which are at the core of many data fusion problems.

Fuzzy Logic
Fuzzy logic has found wide-spread popularity as
a method for representing uncertainty particularly in
applications such as supervisory control and high-level
data fusion tasks. It is often claimed that fuzzy logic pro-
vides an ideal tool for inexact reasoning, particularly in
rule-based systems. Certainly, fuzzy logic has had some
notable success in practical application.

A great deal has been written about fuzzy sets and
fuzzy logic (see for example [25.14] and the discus-
sion in [25.15, Chap. 11]). Here we briefly describe
the main definitions and operations without any attempt
to consider the more advanced features of fuzzy logic
methods.

Consider a universal set consisting of the elements
x; X = {x}. Consider a proper subset A ⊆ X such that

A = {x | x has some specific property} .

In conventional logic systems, we can define a mem-
bership function μA(x) (also called the characteristic
function which reports if a specific element x ∈ X is

a member of this set:

A� μA(x) =
⎧⎨
⎩

1 if x ∈ A

0 if x �∈ A
.

For example X may be the set of all aircraft. The set
A may be the set of all supersonic aircraft. In the fuzzy
logic literature, this is known as a crisp set. In contrast,
a fuzzy set is one in which there is a degree of mem-
bership, ranging between 0 and 1. A fuzzy membership
function μA(x) then defines the degree of membership
of an element x ∈ X in the set A. For example, if X is
again the set of all aircraft, A may be the set of all fast
aircraft. Then the fuzzy membership function μA(x) as-
signs a value between 0 and 1 indicating the degree of
membership of every aircraft x to this set. Formally

A� μA
→ [0, 1] .

Composition rules for fuzzy sets follow the compo-
sition processes for normal crisp sets, for example

A∩B� μA∩B(x) = min[μA(x), μB(x)] ,

A∪B� μA∪B(x) = max[μA(x), μB(x)] .

The normal properties associated with binary logic now
hold; commutativity, associativity, idempotence, dis-
tributivity, De Morgan’s law and absorption. The only
exception is that the law of the excluded middle is no
longer true

A∪A �= X , A∩A �= ∅ .

Together these definitions and laws provide a systematic
means of reasoning about inexact values.

The relationship between fuzzy set theory and prob-
ability is still hotly debated.

Evidential Reasoning
Evidential reasoning (often called the Dempster–Shafer
theory of evidence after the originators of these ideas)
has seen intermittent success particularly in automated
reasoning applications. Evidential reasoning is quali-
tatively different from either probabilistic methods or
fuzzy set theory in the following sense: Consider a uni-
versal set X. In probability theory or fuzzy set theory,
a belief mass may be placed on any element xi ∈ X
and indeed on any subset A ⊆ X. In evidential reason-
ing, belief mass can not only be placed on elements and
sets, but also sets of sets. Specifically, while the domain
of probabilistic methods is all possible subsets X, the
domain of evidential reasoning is the power set 2X.

Part
C

2
5
.1

14 Part C Sensing and Perception

As an example, consider the mutually exclusive set
X = {occupied, empty}. In probability theory we might
assign a probability to each possible event. For exam-
ple, P(occupied) = 0.3, and thus P(empty) = 0.7. In
evidential reasoning, we construct the set of all subsets

2X = {{occupied, empty}, {occupied}, {empty},∅} ,

and belief mass is assigned to all elements of this set as

m({occupied, empty}) = 0.5 ,

m({occupied}) = 0.3 ,

m({empty}) = 0.2 ,

m(∅) = 0.0 ,

(the null set ∅ is assigned a belief mass of zero for nor-
malisation purposes). The interpretation of this is that
there is a 30% chance of occupied, a 20% chance of
empty and a 50% chance of either occupied or empty. In
effect, the measure placed on the set containing both oc-
cupied and empty, is a measure of ignorance or inability
to distinguish between the two alternatives. See [25.16]
for a more detailed example of applying the evidential
method to certainty-grid navigation.

Evidential reasoning thus provides a method of cap-
turing ignorance or an inability to distinguish between

alternatives. In probability theory, this would be dealt
with in a very different manner by assigning an equal
or uniform probability to each alternative. Yet, stating
that there is a 50% chance of occupancy is clearly not
the same as saying that it is unknown if it will occupied
or not. The use of the power set as the frame of dis-
cernment allows a far richer representation of beliefs.
However, this comes at the cost of a substantial increase
in complexity. If there are n elements in the original set
X, then there will be 2n possible subsets on which a be-
lief mass will be assigned. For large n, this is clearly
intractable. Further, when the set is continuous, the set
of all subsets is not even measurable.

Evidential reasoning methods provide a means of
assigning, and combing belief masses on sets. Methods
also exist for obtaining related measures called sup-
port and plausibility which, in effect, provide upper and
lower probability bounds in agreement with Dempster’s
original formulation of this method.

Evidential reasoning can play an important role in
discrete data fusion systems, particularly in areas such
as attribute fusion, and situation assessment, where in-
formation may be unknown or ambiguous. It’s use in
lower-level data fusion problems is challenging as the
assignment of belief mass to the power set scales expo-
nentially with state cardinality.

25.2 Multisensor Fusion Architectures

The multisensor fusion methods described in the pre-
vious section provide the algorithmic means by which
sensor data and their associated uncertainty models can
be used to construct either implicit or explicit models of
the environment. However, a multisensor fusion system
must include many other functional components to man-
age and control the fusion process. The organisation of
these is termed a multisensor fusion architecture.

25.2.1 Architectural Taxonomy

Multisensor systems architectures can be organized in
various ways. The military community has developed
a layout of functional architectures based on the joint
directors of the laboratories (JDL) model for multisen-
sor systems. This approach views multisensor fusion
in terms of signal, feature, threat and situation analysis
levels (so-called JDL levels). The assessment of such
systems is specified in terms of tracking performance,
survivability, efficiency and bandwidth. Such measures

are not generally appropriate in robotics applications
and so the JDL model is not discuss this further here
(see [25.17,18] for details). Other classification schemes
distinguish between low and high level fusion [25.19],
or centralised versus decentralised processing or data
versus variable [25.20].

A general architectural framework for multisensor
robotic systems has been developed and described in
detail by Makarenko [25.21], and we will base our dis-
cussion on his approach. A system architecture is defined
in terms of:

Meta Architecture. A set of high-level considerations
that strongly characterize the system structure. The se-
lection and organization of the system elements may
be guided by aesthetics, efficiency, or other design cri-
teria and goals (for example, system and component
comprehensibility, modularity, scalability, portability,
interoperability, (de)centralization, robustness, fault tol-
erance).

Part
C

2
5
.2

Multisensor Data Fusion 25.2 Multisensor Fusion Architectures 15

Algorithmic Architecture. A specific set of information
fusion and decision making methods. These meth-
ods address data heterogeneity, registration, calibration,
consistency, information content, independence, time in-
terval and scale, and relationships between models and
uncertainty.

Conceptual Architecture. The granularity and func-
tional roles of components (specifically, mappings from
algorithmic elements to functional structures).

Logical Architecture. Detailed canonical component
types (i. e., object-oriented specifications) and inter-
faces to formalise intercomponent services. Components
may be ad hoc or regimented, and other concerns in-
clude granularity, modularity, reuse, verification, data
structures, semantics, etc. Communication issues in-
clude hierarchical versus heterarchical organization,
shared memory versus message passing, information-
based characterizations of subcomponent interactions,
pull/push mechanisms, subscribe-publish mechanisms,
etc. Control involves both the control of actuation sys-
tems within the multisensor fusion system, as well
as control of information requests and dissemination
within the system, and any external control decisions
and commands.

Execution Architecture. Defines mapping of compo-
nents to execution elements. This includes internal or
external methods of ensuring correctness of the code
(i. e., that the environment and sensor models have been
correctly transformed from mathematical or other for-
mal descriptions into computer implementations), and
also validation of the models (i. e., ensure that the for-
mal descriptions match physical reality to the required
extent).

In any closed-loop control system, sensors are used
to provide the feedback information describing the cur-
rent status of the system and its uncertainties. Building
a sensor system for a given application is a system en-
gineering process that includes the analysis of system
requirements, a model of the environment, the determi-
nation of system behavior under different conditions,
and the selection of suitable sensors [25.22]. The next
step in building the sensor system is to assemble the
hardware components and develop the necessary soft-
ware modules for data fusion and interpretation. Finally,
the system is tested, and the performance is analysed.
Once the system is built, it is necessary to monitor
the different components of the system for the purpose
of testing, debugging, and analysis. The system also

requires quantitative measures in terms of time com-
plexity, space complexity, robustness, and efficiency.

In addition, designing and implementing real-time
systems are becoming increasingly complex owing to
many added features such as graphical user interfaces
(GUIs), visualization capabilities, and the use of many
sensors of different types. Therefore, many software
engineering issues such as reusability and the use of
COTS (commercial off-the-shelf) components [25.23],
real time issues [25.24–26], sensor selection [25.27], re-
liability [25.28–30], and embedded testing [25.31] are
now getting more attention from system developers.

Each sensor type has different characteristics and
functional descriptions. Consequently, some approaches
aim to develop general methods of modeling sensor sys-
tems in a manner that is independent of the physical
sensors used. In turn, this enables the performance and
robustness of multisensor systems to be studied in a gen-
eral way. There have been many attempts to provide the
general model, along with its mathematical basis and
description. Some of these modeling techniques con-
cern error analysis and fault tolerance of multisensor
systems [25.32–37]. Other techniques are model based,
and require a priori knowledge of the sensed object
and its environment [25.38–40]. These help fit data
to a model, but do not always provide the means to
compare alternatives. Task-directed sensing is another
approach to devising sensing strategies [25.41–43].
General sensor modeling work has had a consider-
able influence on the evolution of multisensor fusion
architectures.

Another approach to modeling sensor systems is to
define sensori-computational systems associated with
each sensor to allow design, comparison, transforma-
tion, and reduction of any sensory system [25.44]. In
this approach, the concept of an information invariant
is used to define a measure of information complexity.
This provides a computational theory allowing analysis,
comparison and reduction of sensor systems.

In general terms, multisensor fusion architectures
may be classified according to the choice along four
independent design dimensions:

1. centralized – decentralized,
2. local – global interaction of components,
3. modular – monolithic, and
4. heterarchical – hierarchical.

The most prevalent combinations are:

• centralized, global interaction, and hierarchical,• decentralized, global interaction, and heterarchical,

Part
C

2
5
.2

16 Part C Sensing and Perception

• decentralized, local interaction, and hierarchical,• decentralized, local interaction, and heterarchical.

In some cases explicit modularity is also desirable.
Most existing multisensor architectures fit reasonably
well into one of these categories. These categories make
no general commitment to the algorithmic architecture;
if the algorithmic architecture is the predominant fea-
ture of a system, then it will be characterized as part
of multisensor fusion theory in Sect. 25.1; otherwise,
it merely differentiates methods within one of the four
meta architectures.

25.2.2 Centralized, Local Interaction,
and Hierarchical

Centralized, local interaction and hierarchical archi-
tectures encompass a number of system philosophies.
Least representationally demanding is the subsumption
architecture initially proposed by Braitenberg [25.45]
and popularized by Brooks [25.46]. The subsumption
multisensor architecture defines behaviors as the basic
components, and employs a layered set of behaviors to
embody one program (monolithic). Any behavior may
utilize the output of other behaviors, and may also in-
hibit other behaviors. The hierarchy is defined by the
layers, although this is not always clear-cut. The major
design philosophy is to develop behaviors directly from
perception-action loops without recourse to brittle, en-
vironment representations. This leads to robustness in
operation, but a lack of composite behavior predictabil-
ity.

A more sophisticated (representationally) behavior-
based system is the distributed field robot architecture
(DFRA) [25.47]. This is a generalization of the sensor
fusion effects (SFX) architecture [25.48]. This ap-
proach exploits modularity, and aims to achieve both
behavior-based and deliberative action, reconfigurabil-
ity and interoperability through the use of Java, Jini and
XML, fault tolerance, adaptability, longevity, consistent
interfaces and dynamic components. The algorithmic
architecture is based on fuzzy logic controllers. Experi-
ments have been demonstrated on outdoor mobile robot
navigation.

Other similar architectures of this type include
perception action networks Lee [25.49, 50], while
Draper [25.51] focuses on types of information
needed to perform tasks (higher-level integration); see
also [25.52].

Another approach to this type of sensor fusion is to
use artificial neural networks. The advantage is that the

user, at least in principle, does not need to understand
how sensor modalities relate, nor model the uncertain-
ties, nor, in fact, determine the structure of the system
more than to specify the number of layers in the network
and the number of nodes per layer. The neural network is
presented with a set of training examples, and must de-
termine through the weights on the neuron connections,
the optimal mapping from inputs to desired outputs (e.g.,
classifications, control signals, etc.) [25.53, 54].

Various other methods exist; for example,
Hager [25.42, 43] defines a task-oriented approach to
sensor fusion based on Bayesian decision theory and
develops an object oriented programming framework.
Joshi and Sanderson [25.55] describe a

“methodology for addressing model selection and
multisensor fusion issues using representation size
(description length) to choose (1) model class and
number of parameters, (2) model parameter resolu-
tion (3) subset of observed features to model, and
(4) correspondence to map features to models.”

Their approach is broader than an architecture and
uses a minimization criterion to synthesize a multisen-
sor fusion system to solve specific 2D and 3D object
recognition problems.

25.2.3 Decentralized, Global Interaction,
and Heterarchical

The major example of of the decentralised, global inter-
action meta-architecture is the blackboard system. There
have been many examples of blackboard systems de-
veloped for data fusion applications. For example, the
SEPIA system of Cherfaoui and Vachon [25.56] uses
logical sensors (see below) in the form of modular
agents which post results to a blackboard. The over-
all architectural goals for blackboards include; efficient
collaboration and dynamic configuration. Experiments
are reported on an indoor robot moving from room to
room.

The MESSIE system [25.57] is a scene interpreta-
tion system based on multisensor fusion; it has been
applied to the interpretation of remotely sensed im-
ages. A typology of the multisensor fusion concepts
is presented, and the consequences of modeling prob-
lems for objects, scene and strategy are derived. The
proposed multi-specialist architecture generalized the
ideas of their previous work by taking into account
the knowledge of sensors, the multiple viewing no-
tion (shot), and the uncertainty and imprecision of
models and data modeled with possibility theory. In

Part
C

2
5
.2

Multisensor Data Fusion 25.2 Multisensor Fusion Architectures 17

particular, generic models of objects are represented
by concepts independent of sensors (geometry, mater-
ials, and spatial context). Three kinds of specialists
are present in the architecture: generic specialists
(scene and conflict), semantic object specialists, and
low level specialists. A blackboard structure with
a centralized control is used. The interpreted scene
is implemented as a matrix of pointers enabling con-
flicts to be detected very easily. Under the control
of the scene specialist, the conflict specialist resolves
conflicts using the spatial context knowledge of ob-
jects. Finally, an interpretation system with SAR/SPOT
sensors is described, and an example of a session con-
cerned with bridge, urban area and road detection is
shown.

25.2.4 Decentralized, Local Interaction,
and Hierarchical

One of the earliest proposals for this type of archi-
tecture is the RCS (realtime control system) [25.58].
RCS is presented as a cognitive architecture for intel-
ligent control, but essentially uses multisensor fusion
to achieve complex control. RCS focuses on task
decomposition as the fundamental organizing princi-
ple. It defines a set of nodes, each comprised of
a sensor processor, a world model, and a behav-
ior generation component. Nodes communicate with
other nodes, generally in a hierarchical manner, al-
though across layer connections are allowed. The system
supports a wide variety of algorithmic architectures,
from reactive behavior to semantic networks. More-
over, it maintains signals, images, and maps, and
allows tight coupling between iconic and symbolic
representations. The architecture does not generally al-
low dynamic reconfiguration, but maintains the static
module connectivity structure of the specification.
RCS has been demonstrated in unmanned ground
vehicles [25.59]. Other object-oriented approaches in-
clude [25.34, 60].

An early architectural approach which advocated
strong programming semantics for multisensor systems
is the logical sensor system (LSS). This approach ex-
ploits functional (or applicative) language theory to
achieve that.

The most developed version of LSS is instrumented
LSS [25.22]. The ILLS approach is based on LSS in-
troduced by Shilcrat and Henderson [25.61]. The LSS
methodology is designed to specify any sensor in such
a way that hides its physical nature. The main goal
behind LSS was to develop a coherent and efficient pre-

sentation of the information provided by many sensors of
different types. This representation provides a means for
recovery from sensor failure, and also facilitates recon-
figuration of the sensor system when adding or replacing
sensors [25.62].

ILSS is defined as an extension to LSS, and it is
comprised of the following components (Fig. 25.4):

1. ILS name: uniquely identifies a module;
2. Characteristic output vector (COV): strongly typed

output structure, with one output vector and zero or
more input vectors;

3. Commands: input commands to the module, and
output commands to the other modules;

4. Select function: selector that detects the failure of
an alternate and switches to another alternate if
possible;

5. Alternate subnets: alternative ways of producing
the COVout; it is these implementations of one or
more algorithms that carry the main functions of the
module;

6. Control command interpreter (CCI): interpreter of
the commands to the module;

7. Embedded tests: self-testing routines that increase
robustness and facilitate debugging;

8. Monitors: modules that check the validity of the
resulting COVs; and

9. Taps: hooks on the output lines to view different
COV values.

These components identify the system behavior
and provide mechanisms for on-line monitoring and

Commands out COVin

Commandsin

Command control interpreter (CCI)

Select function

.

M
on

it
or

s
Su

bn
et

 1

ILSS name

COVout

Tap

Su
bn

et
 2

Su
bn

et
 3

Su
bn

et
 n

E
m

be
dd

ed
te

st
s

Fig. 25.4 Instrumented logical sensor module

Part
C

2
5
.2

18 Part C Sensing and Perception

debugging. In addition, they provide handles for mea-
suring the run-time performance of the system. Monitors
are validity check stations that filter the output and
alert the user to any undesired results. Each moni-
tor is equipped with a set of rules (or constraints)
that governs the behavior of the COV under different
conditions.

Embedded testing is used for on-line checking
and debugging purposes. Weller proposed a sensor-
processing model with the ability to detect measurement
errors and to recover from these errors [25.31]. This
method is based on providing each system module with
verification tests to verify certain characteristics in the
measured data, and to verify the internal and output data
resulting from the sensor-module algorithm. The recov-
ery strategy is based on rules that are local to the different
sensor modules. ILSS uses a similar approach called lo-
cal embedded testing, in which each module is equipped
with a set of tests based on the semantic definition of
that module. These tests generate input data to check
different aspects of the module, then examine the output
of the module using a set of constraints and rules de-
fined by the semantics. Also, these tests can take input
from other modules to check the operation of a group of
modules. Examples are given of a wall-pose estimation
system comprised of a Labmate platform with a cam-
era and sonars. Many extensions have been proposed for
LSS [25.63, 64].

25.2.5 Decentralized, Local Interaction,
and Heterarchical

The best example of this meta architecture is the active
sensor network (ASN) framework for distributed data
fusion developed by Makarenko [25.21,65]. The distin-
guishing features of the various architectures are now
described.

Table 25.1 Canonical components and the roles they play. Multiple X’s in the same row indicate that some inter-role
relationships are internalized within a component. FRAME does not participate in information fusion or decision making
but is required for localization and other platform-sepcific tasks (from [25.21])

Component Belief Plan Action
Type Source Fuse/Dist Sink Source Fuse/Dist Sink Source Sink

Sensor ×

Node × ×

Actuator ×

Planner × × ×

UI × × ×

Frame

Meta Architecture
The distinguishing features of ASN are its commitment
to decentralization, modularity, and strictly local inter-
actions (this may be physical or by type). Thus, these
are communicating processes. By decentralized is meant
that no component is central to operation of the sys-
tem, and the communication is peer to peer. Also, there
are no central facilities or services (e.g., for commu-
nication, name and service lookup or timing). These
features lead to a system that is scalable, fault tolerant,
and reconfigurable.

Local interactions mean that the number of com-
munication links does not change with the network
size. Moreover, the number of messages should also
remain constant. This makes the system scalable and
reconfigurable as well.

Modularity leads to interoperability derived from in-
terface protocols, reconfigurability, and fault tolerance:
failure may be confined to individual modules.

Algorithmic Architecture
There are three main algorithmic components: belief
fusion, utility fusion and policy selection. Belief fusion
is achieved by communicating all beliefs to neighboring
platforms. A belief is defined as a probability distribution
of the world state space.

Utility fusion is handled by separating the individual
platform’s partial utility into the team utility of belief
quality and local utilities of action and communication.
The downside is that the potential coupling between
individual actions and messages is ignored because the
utilities of action and communication remain local.

The communication and action policies are chosen
by maximizing expected values. The selected approach
is to achieve point maximization for one particular
state and follows the work of Manyika and Grochol-
sky [25.11, 66].

Part
C

2
5
.2

Multisensor Data Fusion 25.3 Applications 19

Conceptual Architecture
The data types of the system include

1. beliefs: current world beliefs,
2. plans: future planned world beliefs, and
3. actions: future planned actions.

The definition of component roles leads to a natural
partition of the system.

The information fusion task is achieved through the
definition of four component roles for each data type;
these are: source, sink, fuser, and distributor. (Note that
the data type action does not have fuser or distributor
component roles.)

Connections between distributors form the backbone
of the ASN framework, and the information exchanged
is in the form of their local beliefs. Similar consider-
ations are used to determine component roles for the
decision making and the system configuration tasks.

Logical Architecture
A detailed architecture specification is determined
from the conceptual architecture. It is comprised of

six canonical component types as described in Ta-
ble 25.1 [25.21].

Makarenko then describes how to combine the com-
ponents and interfaces to realize the use cases of the
problem domain in ASN.

Execution Architecture
The execution architecture traces the mapping of logi-
cal components to runtime elements, such as processes
and shared libraries. The deployment view shows the
mapping of physical components onto the nodes of
the physical system. The source code view explains
how the software implementing the system is or-
ganized. At the architectural level, three items are
addressed: execution, deployment, and source code or-
ganization.

The experimental implementation of the ASN frame-
work has proven to be flexible enough to accommodate
a variety of system topologies, platform and sensor
hardware, and environment representations. Several ex-
amples are given with a variety of sensors, processors
and hardware platforms.

25.3 Applications

Multisensor fusion systems have been applied to a wide
variety of problems in robotics (see references for this
chapter), but the two most general areas are dynamic
system control and environment modeling. Although
there is some overlap in these, they may be generally
characterized as

• dynamic system control: the problem is to use ap-
propriate models and sensors to control the state
of a dynamic system (e.g., industrial robot, mo-
bile robot, autonomous vehicle, surgical robot, etc.).
Usually such systems involve real-time feedback
control loops for steering, acceleration, and behavior
selection. In addition to state estimation, uncer-
tainty models are required. Sensors may include,
force/torque sensors, gyros, GPS, position encoders,
cameras, range finders, etc.;• environment modeling: the problem is to use appro-
priate sensors to construct a model of some aspect
of the physical environment. This may be a partic-
ular object, e.g., a cup, a physical part, a face, etc.,
or a larger part of the surroundings: e.g., the interior
of a building, part of a city or an extended remote or
underground area. Typical sensors include cameras,
radar, 3-D range finders, IR, tactile sensors and touch

probes (CMMs), etc. The result is usually expressed
as geometry (points, lines, surfaces), features (holes,
sinks, corners, etc.), or physical properties. Part of
the problem includes the determination of optimal
sensor placement.

25.3.1 Dynamic System Control

The EMS-Vision system [25.67] is an outstanding ex-
emplar of this application domain. The goal is to develop
a robust and reliable perceptual system for autonomous
vehicles. The development goals as stated by the EMS-
Vision team are:

• COTS components,• wide variety of objects modeled and incorporated
into behaviors,• inertial sensors for ego-state estimation,• peripheral/foveal/saccadic vision,• knowledge and goal driven behavior,• state tracking for objects,• 25 Hz real-time update rate.

The approach has been in development since the 1980s;
Fig. 25.5 shows the first vehicle to drive fully au-

Part
C

2
5
.3

20 Part C Sensing and Perception

Fig. 25.5 First fully autonomous vehicle on German autobahn

tonomously on the German autobahn for 20 km and at
speeds up to 96 km/h.

Information from inertial and vision sensors is com-
bined to produce a road scene tree (Fig. 25.6). A 4-D
generic object representation is built which includes
background knowledge of the object (e.g., roads), its be-
havioral capabilities, object state and variances, shape
and aspect parameters. Figure 25.7 shows the 4-D iner-

Other
vehicle

Wide angle right

Road at
cg

Own vehicle

Platform base

Wide angle left

Pan and movable part
of gaze control platform

Road at
lookahead
distance Lf

Fixed on two-axis
gaze control platform

Extended stretch of road
xR1

xR0yR0

zR0

yR1

zR1

xRf

yRf

zRf

xwl

xTxwT
ywl

yT

ywr

zT

x

y

z

zW

z

x

y Color tele straight

Fig. 25.6 EMS-Vision road scene tree

tial/vision multisensor guidance system, while Fig. 25.8
shows the hardware aspects.

In summary, the EMS-Vision system is an interesting
and powerful demonstration of multisensor fusion for
dynamic system control.

25.3.2 ANSER II: Decentralised Data Fusion

Decentralised data fusion (DDF) methods were initially
motivated by the insight that the information or canon-
ical form of the conventional Kalman filter data fusion
algorithm could be implemented by simply adding in-
formation contributions from observations as shown
in (25.41). As these (vector and matrix) additions are
commutative, the update or data fusion process can
be optimally distributed amongst a network of sen-
sors [25.11, 12, 68]. The aim of the ANSER II project
was to generalise the DDF method to deal with non-
Gaussian probabilities for observations and states, and
to incorporate information from a diversity of sources
including uninhabited air and ground vehicles, terrain
data-bases and human operatives.

The mathematical structure of a DDF sensor node is
shown in Fig. 25.9. The sensor is modeled directly in the
form of a likelihood function. Once instantiated with an
observation, the likelihood function is input to a local fu-
sion loop which implements a local form of the Bayesian

Part
C

2
5
.3

Multisensor Data Fusion 25.3 Applications 21

time and observation update of (25.7) and (25.8). Net-
work nodes accumulate probabilistic information from
observation or communication and exchange mutual in-
formation (information gain) with other nodes in the
network [25.21]. This mutual information is transmit-
ted to and assimilated by other nodes in the network
in an ad-hoc manner. The result is that all nodes in the
network obtain a single integrated posterior probability
based all node observations.

The ANSER II system consists of a pair of au-
tonomous air vehicles equipped with infra-red and
visual sensors, a pair of unmanned ground vehicles
equipped with visual and radar sensors, and additional
information provided by geometric and hyper-spectral
data bases, along with information input by human
operatives [25.69]. The likelihood functions for single-
sensor features are obtained through a semi-supervised
machine learning method [25.70]. The resulting prob-

Best low frequency inertial ego-state estimate

t /TV-cycles

Typical time delays in image sequence processing

Time
delayed
vis-
ual

+

No
time

delays

Short-term (high-frequency, 100 Hz)
Strap-down navigation

4-D visual / inertial joint data interpretation
for dynamic ground vehicle guidance

Xi, st

Xυ,E

High-frequency inertial
ego-state

Gaze controlGaze
platform

3 orthogonal
angular rates

Frame
grabber

0 1 2 3 4 5

V

Cameras Feature
extract.

Ego-state (own body)

Conventional
sensors

Environment

γ, �, μ, Hgeo

Low frequency
(time delayed)

estimates
of inertial data
of the surface:

(static objects)

ωye
ωze

ωzayax

3 orthogonal
accelerations

Low-pass filtering
for stationary
components

(gravity vector)

States of
other

objects

Prediction
for inertial

measurements

Fig. 25.7 EMS-Vision guidance system

abilities are modeled in the form of a mixture of
Gaussians. Each platform then maintains a bank of
decentralised, non-Gaussian Bayesian filters for the ob-
served features, and transmits this information to all
other platforms. The net result is that each platform
maintains a complete map of all features observed by all
nodes in the network. Multiple observations of the same
feature, possibly by different platforms, results in an in-
creasingly accurate estimate of the feature location for
all nodes. A corresponding discrete probability measure
is used for Fig. 25.10 shows a synopsis of the operation
of the ANSER II system.

The ANSER II system demonstrates a number of
general principles in Bayesian data fusion methods.
Specifically the need to appropriately model sensors
through the likelihood function, and the possibility of
building very different data fusion architectures from
the essential Bayesian form.

Part
C

2
5
.3

22 Part C Sensing and Perception

Fast ethernet
Switch Switch

Radar

Parallel

Video

VaPM only

Image-
proc.
PC 2

SCI-Net

Link or CAN

+ Accel.
 sensors
+ Rate
 sensors
+ Angle
 sensors

+ Odometry
+ Stearing angle
+ Throttle position
+ Brake pressure
+ Motor revolution

Link

Serial Transputers

Image-
proc.
PC 1

Image-
proc.
PC 3

Platform-
subsystem

Vehicle-
subsystem

Inertial
sensors

+ Throttle
+ Brake
+ Stearing

ActuatorsConvent. sensorsGPS

Ethernet

Behavior
PC

Gateway
PC

Fig. 25.8 EMS-Vision hardware layout

Density
fitting

Likelihood
model

Time update
(convolution)

Assimilation
(multiplication)

Sensor node

zi (k) Pi (z |x)

P (xk |Zk–1,zi(k))

P (xk |Zk–1,zi(k))

P (xk |zQ,zP)

P (xk |Zk–1)

P (xk |Zk)

Pi (z=zi(k)|x)

Channel filter
P

Channel filterChannel
manager

Q

Preprocess
and feature
extraction

Observation
update

(multiplication

Fig. 25.9 Mathematical structure of a decentralised data fusion node

Part
C

2
5
.3

Multisensor Data Fusion 25.4 Conclusions and Further Reading 23

Fig. 25.10a–i A synopsis of the ANSER II autonomous network and its operation. (a–c) Main system components; (a) air vehicle,
(b) ground vehicle, (c) human operative. (d–e) The perception process; (d) top three dimensions of features discovered from
ground-based visual sensor data along with the derived mixture model describing these feature properties, (e) sector of the overall
picture obtained from fusing air vehicle (UAV), ground vehicle (GV) and human operator (HO) information. Each set of ellipses
corresponds to a particular feature and the labels represent the identity state with highest probability. (f–i) Sequential fusion
process for two close landmarks: (f) a tree and a red car, (g) bearing-only visual observations of these landmarks are successively
fused, (h) to determine location and identity (i). Note the Gaussian mixture model for the bearing measurement likelihood

25.4 Conclusions and Further Reading

Multisensor data fusion has progressed much in the
last few decades; further advances in the field will
be documented in the robotics and multisensor fusion

and integration conference and journal literature. Ro-
bust applications are being fielded based on the body
of theory and experimental knowledge produced by

Part
C

2
5
.4

24 Part C Sensing and Perception

the research community. Current directions of interest
include:

1. large-scale, ubiquitous sensor systems,
2. bio-based or biomimetic systems,
3. medical in situ applications, and
4. wireless sensor networks.

Representative large-scale examples include intelligent
vehicle and road systems, as well as instrumented
contexts such as cities. Biological principles may
provide fundamentally distinct approaches to the ex-
ploitation of dense, redundant, correlated, noisy sensors,
especially when considered as part of a Gibbsian
framework for behavioral response to environmen-
tal stimuli. Another issue here is the development
of a theoretical understanding of sensor system de-
velopment, adaptivity and learning with respect to

the particular context in which the system is de-
ployed.

Further pushing the envelope of both technology and
theory will permit the introduction of micro and nano
sensors into the human body and allow the monitor-
ing and locally adaptive treatment of various maladies.
Finally, a more complete theoretical framework is still
required which encompasses system models for wire-
less sensor networks. This should include models of the
physical phenomena being monitored, as well as opera-
tional and network issues. Finally, numerical analysis of
the algorithmic properties of data-driven systems with
sensor data error sources which must be unified with the
analysis of truncation, roundoff, and other errors.

A firm foundation exists upon which to build these
new theories, systems, and applications. It will be a vi-
brant area of research for years to come!

References

25.1 S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics
(MIT Press, Cambridge 2005)

25.2 J.O. Berger: Statistical Decision Theory and
Bayesian Analysis (Springer, Berlin, Heidelberg

1985)

25.3 A. Elfes: Sonar-based real-world mapping and

navigation, IEEE Trans. Robot. Autom. 3(3), 249–265

(1987)

25.4 A. Elfes: Integration of sonar and stereo range data

using a grid-based representation, Proc. IEEE Int.

Conf. Robot. Autom. (1988) 727–

25.5 L.D. Stone, C.A. Barlow, T.L. Corwin: Bayesian Mul-
tiple Target Tracking (Artech House, Norwood 1999)

25.6 Y. Bar-Shalom: Multi-Target Multi-Sensor Tracking
(Artec House, Norwood 1990)

25.7 Y. Bar-Shalom, T.E. Fortmann: Tracking and Data
Association (Academic, New York 1988)

25.8 P.S. Maybeck: Stochastic Models, Estimaton and
Control, Vol. I (Academic, New York 1979)

25.9 W. Sorensen: Special issue on the applications of

the Kalman filter, IEEE Trans. Autom. Control 28(3),

(1983)

25.10 B.D.O. Anderson, J.B. Moore: Optimal Filtering
(Prentice Hall, Upper Saddle River 1979)

25.11 J. Manyika, H.F. Durrant-Whyte: Data Fusion and
Sensor Management: An Information-Theoretic
Approach (Prentice Hall, Upper Saddle River

1994)

25.12 S. Sukkarieh, E. Nettleton, J.H. Kim, M. Ridley,

A. Goktogan, H. Durrant-Whyte: The ANSER project:

Data fusion across multiple uninhabited air vehi-

cles, Int. J. Robot. Res. 22(7), 505–539 (2003)

25.13 R.E. Moore: Interval Analysis (Prentice Hall, Upper

Saddle River 1966)

25.14 D. Dubois, H. Prade: Fuzzy Sets and Systems: Theory
and Applications (Academic, New York 1980)

25.15 S. Blackman, R. Popoli: Design and Analysis of
Modern Tracking Systems (Artec House, Norwood

1999)

25.16 D. Pagac, E.M. Nebot, H. Durrant-Whyte: An evi-

dential approach to map-building for autonomous

vehicles, IEEE Trans. Robot. Autom. 14(4), 623–629

(1998)

25.17 D. Hall, J. Llinas: Handbook of Multisensor Data
Fusion (CRC, Boca Raton 2001)

25.18 E.L. Waltz, J. Llinas: Sensor Fusion (Artec House,

Norwood 1991)

25.19 M. Kam, Z. Zhu, P. Kalata: Sensor fusion for mobile

robot navigation, IEEE Proc. 85, 108–119 (1997)

25.20 H. Carvalho, W. Heinzelman, A. Murphy, C. Coelho:

A general data fusion architecture, Proc. 6th Int.

Conf. Inf. Fusion, Cairns (2003)

25.21 A. Makarenko: A Decentralized Architecture for Ac-

tive Sensor Networks. Ph.D. Thesis (University of

Sydney, Sydney 2004)

25.22 M. Dekhil, T. Henderson: Instrumented logical sen-

sors systems, Int. J. Robot. Res. 17(4), 402–417

(1998)

25.23 J.A. Profeta: Safety-critical systems built with COTS,

IEEE Comput. 29(11), 54–60 (1996)

25.24 H. Hu, J.M. Brady, F. Du, P. Probert: Distributed

real-time control of a mobile robot, J. Intell. Au-

tom. Soft Comput. 1(1), 63–83 (1995)

25.25 S.A. Schneider, V. Chen, G. Pardo: ControlShell: A

real-time software framework, AIAA Conf. Intell.

Robot. Field Fact. Serv. Space (1994)

25.26 D. Simon, B. Espiau, E. Castillo, K. Kapellos:

Computer-aided design of a generic robot con-

Part
C

2
5

Multisensor Data Fusion References 25

troller handling reactivity and real-time issues,

IEEE Trans. Control Syst. Technol. 4(1), (1993)

25.27 C. Giraud, B. Jouvencel: Sensor selection in a fu-

sion process: a fuzzy approach, Proc. IEEE Int. Conf.

Multisens. Fusion Integr., Las Vegas (1994) 599–606

25.28 R. Kapur, T.W. Williams, E.F. Miller: System testing

and reliability techniques for avoiding failure, IEEE

Comput. 29(11), 28–30 (1996)

25.29 K.H. Kim, C. Subbaraman: Fault-tolerant real-time

objects, Commun. ACM 40(1), 75–82 (1997)

25.30 D.B. Stewart, P.K. Khosla: Mechanisms for detect-

ing and handling timing errors, Commun. ACM

40(1), 87–93 (1997)

25.31 G. Weller, F. Groen, L. Hertzberger: A sensor

processing model incorporating error detection

and recovery. In: Traditional and Non-Traditional
Robotic Sensors, ed. by T. Henderson (Springer,

Berlin, Heidelberg 1990) pp. 351–363

25.32 R.R. Brooks, S. Iyengar: Averaging algorithm
for multi-dimensional redundant sensor ar-
rays: resolving sensor inconsistencies, Tech. Rep.

(Louisiana State University, 1993)

25.33 T.C. Henderson, M. Dekhil: Visual target based wall
pose estimation, Tech. Rep. UUCS-97-010 (Univer-

sity of Utah, 1997)

25.34 S. Iyengar, D. Jayasimha, D. Nadig: A versatile ar-

chitecture for the distributed sensor integration

problem, IEEE Comput. 43, 175–185 (1994)

25.35 D. Nadig, S. Iyengar, D. Jayasimha: New archi-

tecture for distributed sensor integration, IEEE

SOUTHEASTCON Proc. (1993)

25.36 L. Prasad, S. Iyengar, R.L. Kashyap, R.N. Madan:

Functional characterization of fault tolerant inte-

gration in distributed sensor networks, IEEE Trans.

Syst. Man Cybern. , 1082–1087 (1991)

25.37 L. Prasad, S. Iyengar, R. Rao, R. Kashyap: Fault-

tolerence sensor integration using multiresolution

decomposition, Am. Phys. Soc. , 3452–3461 (1994)

25.38 H.F. Durrant-Whyte: Integration, Coordination,
and Control of Multi-Sensor Robot Systems (Kluwer

Academic, Boston 1987)

25.39 F. Groen, P. Antonissen, G. Weller: Model based

robot vision, IEEE Instrum. Meas. Technol. Conf.

(1993) 584–588

25.40 R. Joshi, A.C. Sanderson: Model-based multisensor

data fusion: a minimal representation approach,

Proc. IEEE Int. Conf. Robot. Autom. (1994)

25.41 A.J. Briggs, B.R. Donald: Automatic sensor config-

uration for task-directed planning, Proc. IEEE Int.

Conf. Robot. Autom. (1994) 1345–1350

25.42 G. Hager: Task Directed Sensor Fusion and Planning
(Kluwer Academic, Boston 1990)

25.43 G. Hager, M. Mintz: Computational methods for

task-directed sensor data fusion and sensor plan-

ning, Int. J. Robot. Res. 10(4), 285–313 (1991)

25.44 B. Donald: On information invariants in robotics,

Artif. Intell. 72, 217–304 (1995)

25.45 V. Braitenberg: Vehicles: Experiments in Synthetic
Psychology (MIT Press, Cambridge 1984)

25.46 R.A. Brooks: A robust layered control system for a

mobile robot, IEEE Trans. Robot. Autom. 2(1), 14–23

(1986)

25.47 K.P. Valavanis, A.L. Nelson, L. Doitsidis, M. Long,

R.R. Murphy: Validation of a distributed field robot

architecture integrated with a matlab based con-

trol theoretic environment: A case study of fuzzy

logic based robot navigation, CRASAR 25 (University

of South Florida, 2004)

25.48 R.R. Murphy: Introduction to AI Robotics (MIT Press,

Cambridge 2000)

25.49 S. Lee: Sensor fusion and planning with

perception-action network, Proc. IEEE Conf. Mul-

tisens. Fusion Integr. Intell. Syst., Washington

(1996)

25.50 S. Lee, S. Ro: Uncertainty self-management with

perception net based geometric data fusion, Proc.

IEEE Conf. Robot. Autom., Albuquerque (1997)

25.51 B.A. Draper, A.R. Hanson, S. Buluswar, E.M. Rise-

man: Information acquisition and fusion in the

mobile perception laboratory, Proc. SPIE – Signal

Processing, Sensor Fusion, and Target Recognition

VI, Vol. 2059 (1996) 175–187

25.52 S.S. Shafer, A. Stentz, C.E. Thorpe: An architecture

for sensor fusion in a mobile robot, Proc. IEEE Int.

Conf. Robot. Autom. (1986) 2002–2007

25.53 S. Nagata, M. Sekiguchi, K. Asakawa: Mobile robot

control by a structured hierarchical neural net-

work, IEEE Control Syst. Mag. 10(3), 69–76 (1990)

25.54 M. Pachter, P. Chandler: Challenges of autonomous

control, IEEE Control Syst. Mag. 18(4), 92–97 (1998)

25.55 R. Joshi, A.C. Sanderson: Multisensor Fusion (World

Scientific, Singapore 1999)

25.56 V. Berge-Cherfaoui, B. Vachon: Dynamic configu-

ration of mobile robot perceptual system, Proc. IEEE

Conference on Multisensor Fusion and Integration

for Intelligent Systems, Las Vegas (1994)

25.57 V. Clement, G. Giraudon, S. Houzelle, F. Sandakly:

Interpretation of remotely sensed images in a con-

text of mulrisensor fusion using a multi-specialist

architecture, Rapport de Recherche: Programme 4

- Robotique, Image et Vision 1768, INRIA (1992)

25.58 J. Albus: RCS: A cognitive architecture for intelli-

gent multi-agent systems, Proc. IFAC Symp. Intell.

Auton. Veh., Lisbon (2004)

25.59 R. Camden, B. Bodt, S. Schipani, J. Bornstein,

R. Phelps, T. Runyon, F. French: Autonomous
mobility technology assessment: Interim report,
ARL-MR 565 (Army Research Laboratory, 2003)

25.60 T. Queeney, E. Woods: A generic architecture for

real-time multisensor fusion tracking algorithm

development and evaluation, Proc. SPIE – Signal

Processing, Sensor Fusion, and Target Recognition

VII, Vol. 2355 (1994) 33–42

25.61 T. Henderson, E. Shilcrat: Logical sensor systems, J.

Robot. Syst. , 169–193 (1984)

Part
C

2
5

26 Part C Sensing and Perception

25.62 T. Henderson, C. Hansen, B. Bhanu: The specifica-

tion of distributed sensing and control, J. Robot.

Syst. , 387–396 (1985)

25.63 J.D. Elliott: Multisensor fusion within an encap-

sulated logical device architecture. Master’s Thesis

(University of Waterloo, Waterloo 2001)

25.64 M.D. Naish: Elsa: An intelligent multisensor inte-

gration architecture for industrial grading tasks.

Master’s thesis (University of Western Ontario, Lon-

don 1998)

25.65 A. Makarenko, A. Brooks, S. Williams, H. Durrant-

Whyte, B. Grocholsky: A decentralized architecture

for active sensor networks, Proc. IEEE Int. Conf.

Robot. Autom., New Orleans (2004) 1097–1102

25.66 B. Grocholsky, A. Makarenko, H. Durrant-Whyte:

Information-theoretic coordinated control of mul-

tiple sensor platforms, Proc. IEEE Int. Conf. Robot.

Autom., Taipei (2003) 1521–1527

25.67 R. Gregor, M. Lützeler, M. Pellkofer, K.-H. Sieder-

sberger, E. Dickmanns: EMS-Vision: A perceptual

system for autonomous vehicles, IEEE Trans. Intell.

Transp. Syst. 3(1), (2002)

25.68 B. Rao, H. Durrant-Whyte, A. Sheen: A fully de-

centralized multi-sensor system for tracking and

surveillance, Int. J. Robot. Res. 12(1), 20–44 (1993)

25.69 B. Upcroft: Non-gaussian state estimation in an

outdoor decentralised sensor network, Proc. IEEE

Conf. Decis. Control (CDC) (2006)

25.70 S. Kumar, F. Ramos, B. Upcroft, H. Durrant-Whyte:

A statistical framework for natural feature repre-

sentation, Proc. IEEE/RSJ Int. Conf. Intell. Robot.

Syst. (IROS), Edmonton (2005) 1–6

Part
C

2
5

http://www.springer.com/978-3-540-23957-4

